Characterization of 3D fibrous media with geodesic methods

Vincent Morard, Etienne Decencière, Petr Dokládal

Ecole des Mines de Paris Centre de Morphologie Mathématique

3-D Microstructure Meeting

Motivations Pretreatments

Motivations

- 3-D images of biological tissues
- 48 images classify in 2 or 4 classes : {*Healthy*, *Pathological*}, {*H*₀, *H*₃₀, *P*₇₀, *P*₁₀₀} :

Degradation of the tissues				
Healthy	Pathological			
H0 H30	P70 P100			
Degradation state				

Problematic

- Finding relevant features to classify healthy and pathological fibers
- Make a statistical analysis

Difficulties

- Anisotropy of the signal
- Small number of images ⇒ overfitting
- Very high variability between tissues

- Motivations
- Pretreatments

- Geodesic methods
- Skeleton methods
- Statistical analysis
 - Correlation with the degradation
 - Statistical model

Motivations Pretreatments

Pretreatments

Fibers enhancement

Linear Difference of Gaussian (DoG) to detect long structures \rightarrow Image of the fibers in grey scale

Segmentation of the fibers

No global threshold, then, we use an adaptive threshold for each slice of the 3-D image \rightarrow Mask of the fibers

(c) Healthy tissues H₀

(d) Pathological tissues P100

Introduction

- Motivations
- Pretreatments

2 Computation of the features

- Geodesic methods
- Skeleton methods

Statistical analysis

- Correlation with the degradation
- Statistical model

Geodesic diameter

Introduced by C. Lantuéjoul in [4].

Geodesic methods Skeleton methods

Geodesy

With the barycentric diameter, we can define other attributes :

Geodesic elongation

Definition (Geodesic elongation)	
in 2D :	$E(X) = \frac{\pi L^2(X)}{4S(X)}$
in 3D :	$E(X) = \frac{\pi L^3(X)}{6V(X)}$

Geodesic tortuosity

Definition (Geodesic tortuosity)

$$T(X) = \frac{L(X)}{L_{Eucl}(X)}$$

Geodesic attributes thinnings

The idea is to associate thinnings with geodesic attribute to get a new class of filters (Recently introduced in Morard et al. [5])

$$\psi_{\chi}(X_i) = \begin{cases} X_i & \text{if } \chi(X_i) \text{ is true} \\ \emptyset & \text{otherwise,} \end{cases}$$
(1)

Binary thinnings :

$$\rho_{\chi}(X) = \bigcup_{i} \psi_{\chi}(X_{i}).$$
⁽²⁾

Extension to grey scale images $\rho^{O}f(x) = \vee \{h \in V \mid x \in \rho(X^{h}(f))\}.$ (3) $\rho^{T}f(x) = \vee \{h \in V \mid x \in X_{i}^{h} : \exists \rho(X_{i}^{k}) \neq \emptyset, X_{i}^{k} \subseteq X_{i}^{h}, \forall k \ge h\}.$ (4)

How to compute efficiently the geodesic diameter?

Geodesic methods Skeleton methods

Finding an approximation of the geodesic diameter

See Morard et al. [6] : Efficient geodesic attribute thinnings

- The starting point is the farthest point from the barycenter of X
- Only 2 propagations

Barycentric diameter

Geodesic methods Skeleton methods

Geodesic methods

(h) Barycentric diameter (Heal- (i) Barycentric diameter (Pathological thy tissues S_0) tissues P_{100})

(j) Geodesic elongation (Heal- (k) Geodesic Elongation (Pathological thy tissues *P*₁₀₀)

Characterization of 3D fibrous media

Geodesic methods Skeleton methods

Features

We define 2 connectivities C8 et C26

we get 6 features :

$$F_{L,C,\gamma} = \frac{Card(\rho_{L>\gamma,C}(t_{FB}))}{Card(t_{FB})} \times 100$$

$$F_{E,C,\gamma} = \frac{Card(\rho_{E>\gamma,C}(t_{FB}))}{Card(t_{FB})} \times 100$$

$$F_{T,C,\gamma} = \frac{Card(\psi_{T>\gamma,C}(t_{FB}))}{Card(t_{FB})} \times 100$$

Skeleton of the fibers, spatial features of the fibers

- Computation of the 3D skeleton [1]
- Pruning
- Suppression of the triple points.
- We get 3 features :

$$\begin{split} F_{SK_{C_{28},NB}} &= CardCC(f_{Sk,C_{28}}) \\ F_{SK_{C_{28},MEAN}} &= \frac{\sum LengthCC(f_{Sk,C_{28}})}{F_{SK_{C_{28},NB}}} \\ F_{SK_{C_{28},\gamma}} &= CardCC(f_{Sk,C_{28}}) > \gamma \end{split}$$

Introduction

- Motivations
- Pretreatments

2 Computation of the features

- Geodesic methods
- Skeleton methods

Statistical analysis

- Correlation with the degradation
- Statistical model

Correlation with the degradation Statistical model

Correlation with the degradation

Morard, Decencière, Dokladal

Correlation with the degradation Statistical model

Correlation with the degradation

Statistical model

To avoid overfitting : \rightarrow Linear regression

Feature selection :

- LARS, Efron et al. in [2],
- LASSO, Tibshirani in [7],
- Forward Stagewise Selection, Hastie et al. in [3].

TABLE: Prediction rate and the features are sorted by importance.

	OLS	Stagewise	LASSO	LAR
Prediction Rate	68%	75%	75%	73%
1	F _{SK,MEAN}	F _{SK,MEAN}	F _{E,26}	F _{E,26}
2	F _{E,26}	F _{E,26}	F _{SK,MEAN}	F _{SK,MEAN}
3	F _{SK,NB}	F _{SK,50}	F _{L,26}	F _{SK,50}
4	F _{T,26}	F _{L,26}	F _{SK,50}	F _{T,8}
5	F _{SK,50}	F _{T,8}		F _{E,8}
6	F _{E,8}			F _{L,26}
7	F _{L,26}			
8	F _{T,8}			
9	F _{L,8}			

Validation method : Leave One Out

- Characterization of the fibers with geodesic methods
- A new attribute is introduce to speed up the computation : the barycentric diameter
- Characterization of the structures with the skeleton
- Statistical analysis with a subset selection

Correlation with the degradation Statistical model

P. Dokladal, C. Lohou, L. Perroton, and G. Bertrand. A new thinning algorithm and its application to extraction of blood vessels, 1999.

T. Hastie, R. Tibshirani, and J. Friedman. *The elements of statistical learning : data mining, inference, and prediction. volume2.* Springer Verlag, 2009.

C. Lantuejoul and S. Beucher. Geodesic distance and image analysis. pages 138–142, Salzburg, Australia, 1980. Mikroscopie.

V. Morard, E. Decencière, and P. Dokládal. Geodesic attributes thinnings and thickenings. In International Symposium on Mathematical Morphology. Springer, 2011.

V. Morard, E. Decencière, and P. Dokládal. Efficient geodesic attribute thinnings (submitted). *Journal of Mathematical Images and Vision*, 2011.

R. Tibshirani.

Regression shrinkage and selection via the lasso.

Journal of the Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

Annexe 1 : Correlation matrices

Annexe 2 : Anisotropy of the signal

Annexe 3 : Binary objects

Morard, Decencière, Dokladal

Annexe 4 : Regularization path LARS

Annexe 5 : Regularization path LASSO

24/

Annexe 6 : Regularization path Forward stagewise selection

Annexe 7 : Correlation with the degradation

